Study Guide Test 4

Here is a study check list for test 4:

  • Definition of Experiment, Sample Space, Event, and Outcome
  • Definitions of the intersection, union and complement of events
    • Given an events $latex E$ and $latex F$, you should be able to explain in words what the event $latex E\cup F$, $latex E\cap F$ and $latex E’$ (See Section 6.1 homework)
    • Know when two events are mutually exclusive.
  • Know the definition of a probability distribution. (See Section 6.2 for lots of examples.)
  • Know how to compute probability of an event, given that all outcomes are equally likely (See section 6.3)
  • Know the inclusion-exclusion rule for probability: $latex Pr(E\cup F) = Pr(E) + Pr(F) – Pr( E\cap F)$ (See Example 11 from Section 6.2.)
  • Use inclusion-exclusion to fill in a Venn Diagram (For some good problems see number 33 and 35 from Section 6.2 and numbers 1-8 from Section 6.4.)
  • Know the complement rule: $latex Pr(E) = 1-Pr(E’)$
  • Use the complement rule to compute probability
    • Good clue to look for: `at least 1’…. See for example, the birthday example (example 6 in section 6.3)
  • Know how to compute conditional probability (See Section 6.4)
  • Know the definition of independence: Two events are independent if $latex Pr(E\cap F) = Pr(E)\cdot Pr(F)$ (See Section 6.4, problems 33-45)

Test 3 Extra Credit

As promised, here is the extra credit I promised in class. Problems are based on some of the commonly missed problems from the test. The points will go toward your overall test grade.

The extra credit is due on March 31 at 10:15 AM. Late submissions will not be accepted.

Download (PDF, 53KB)

Here’s the link to download: https://math114barnard.wordpress.ncsu.edu/files/2016/03/Extra-Credit-Test-3.pdf