Chapter 6 Probability 6.1-6.3

March 22, 2016

Coin Tosses

An experiment consists of tossing a coin 3 times and observing the result as a sequence of heads and tails.

- Let *E* be the event: More heads than tails occur.
- Let *F* be the event: The first toss is a head.
- 1 What is the sample space for the experiment?
- 2 Are the events E and F mutually exclusive?
- **3** Does the event (T, H, H) belong to the event $E \cup F$?

Dice

Consider the experiment in which a 6-sided dice is rolled three times, and the result is recorded as a sequence.

- For example, one possible outcome is (1, 4, 3).
- Suppose that *E* is the event: At least two of the rolls are the same.
- 1 How large is the sample space?
- **2** Describe the complement of E.

Probabilities

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Outcome	Probability
<i>s</i> ₁	p_1
<i>s</i> ₂	<i>p</i> ₂
÷	÷
s _n	p _n

This table is called the **probability distribution** for the sample space $S = \{s_1, s_2, \dots, s_n\}$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Is this a probability distribution?

Outcome	Probability
<i>s</i> ₁	.3
<i>s</i> ₂	.2
s 3	.4
<i>S</i> 4	.2

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ④ Q @

Is this a probability distribution?

Outcome	Probability
<i>s</i> ₁	.2
<i>s</i> ₂	.2
<i>s</i> ₃	.7
<i>s</i> 4	1

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Is this a probability distribution?

ity

An experiment with outcomes s_1 , s_2 , s_3 , s_4 has the following probability distribution:

Outcome	Probability
<i>s</i> ₁	.1
<i>s</i> ₂	.6
<i>s</i> 3	.1
<i>S</i> 4	.2

Let
$$E = \{s_1, s_2\}$$
 and $F = \{s_2, s_4\}$.

- 1 Determine Pr(E).
- **2** Determine Pr(F').
- **3** Determine $Pr(E \cap F)$.
- **4** Determine $Pr(E \cup F)$.

- A factory needs two raw materials to operate.
 - The probability of event *E* = having an adequate supply of material *A* is .95.
 - The probability of F = having an adequate supply of material B is .97.
 - The probability that the factory has an adequate supply of either material A or material B is .99.

What is the probability that the factory can operate?

Compute Probability

An experiment consists of tossing a coin 3 times and observing the result as a sequence of heads and tails.

- Let *E* be the event: More heads than tails occur.
- Let *F* be the event: The first toss is a head.

1 Assuming that all outcomes are equally likely, what is Pr(E)? Pr(F)?

Compute Probability

Consider the experiment in which a 6-sided dice is rolled three times, and the result is recorded as a sequence.

- For example, one possible outcome is (1, 4, 3).
- Suppose that *E* is the event: At least two of the rolls are the same.
- The probability of E is...